Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
J Physiol ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345865

RESUMO

Androgenic anabolic steroids (AAS) are commonly abused by young men. Male sex and increased AAS levels are associated with earlier and more severe manifestation of common cardiac conditions, such as atrial fibrillation, and rare ones, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Clinical observations suggest a potential atrial involvement in ARVC. Arrhythmogenic right ventricular cardiomyopathy is caused by desmosomal gene defects, including reduced plakoglobin expression. Here, we analysed clinical records from 146 ARVC patients to identify that ARVC is more common in males than females. Patients with ARVC also had an increased incidence of atrial arrhythmias and P wave changes. To study desmosomal vulnerability and the effects of AAS on the atria, young adult male mice, heterozygously deficient for plakoglobin (Plako+/- ), and wild type (WT) littermates were chronically exposed to 5α-dihydrotestosterone (DHT) or placebo. The DHT increased atrial expression of pro-hypertrophic, fibrotic and inflammatory transcripts. In mice with reduced plakoglobin, DHT exaggerated P wave abnormalities, atrial conduction slowing, sodium current depletion, action potential amplitude reduction and the fall in action potential depolarization rate. Super-resolution microscopy revealed a decrease in NaV 1.5 membrane clustering in Plako+/- atrial cardiomyocytes after DHT exposure. In summary, AAS combined with plakoglobin deficiency cause pathological atrial electrical remodelling in young male hearts. Male sex is likely to increase the risk of atrial arrhythmia, particularly in those with desmosomal gene variants. This risk is likely to be exaggerated further by AAS use. KEY POINTS: Androgenic male sex hormones, such as testosterone, might increase the risk of atrial fibrillation in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), which is often caused by desmosomal gene defects (e.g. reduced plakoglobin expression). In this study, we observed a significantly higher proportion of males who had ARVC compared with females, and atrial arrhythmias and P wave changes represented a common observation in advanced ARVC stages. In mice with reduced plakoglobin expression, chronic administration of 5α-dihydrotestosterone led to P wave abnormalities, atrial conduction slowing, sodium current depletion and a decrease in membrane-localized NaV 1.5 clusters. 5α-Dihydrotestosterone, therefore, represents a stimulus aggravating the pro-arrhythmic phenotype in carriers of desmosomal mutations and can affect atrial electrical function.

2.
Free Radic Biol Med ; 210: 406-415, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061606

RESUMO

BACKGROUND AND AIMS: Dendritic cells (DCs), professional antigen-presenting cells, play an important role in pathologies by controlling adaptive immune responses. However, their adaptation to and functionality in hypercholesterolemia, a driving factor in disease onset and progression of atherosclerosis remains to be established. METHODS: In this study, we addressed the immediate impact of high fat diet-induced hypercholesterolemia in low-density lipoprotein receptor deficient (Ldlr-/-) mice on separate DC subsets, their compartmentalization and functionality. RESULTS: While hypercholesterolemia induced a significant rise in bone marrow myeloid and dendritic cell progenitor (MDP) frequency and proliferation rate after high fat diet feeding, it did not affect DC subset numbers in lymphoid tissue. Hypercholesterolemia led to almost immediate and persistent augmentation in granularity of conventional DCs (cDCs), in particular cDC2, reflecting progressive lipid accumulation by these subsets. Plasmacytoid DCs were only marginally and transiently affected. Lipid loading increased co-stimulatory molecule expression and ROS accumulation by cDC2. Despite this hyperactivation, lipid-laden cDC2 displayed a profoundly reduced capacity to stimulate naïve CD4+ T cells. CONCLUSION: Our data provide evidence that in hypercholesterolemic conditions, peripheral cDC2 subsets engulf lipids in situ, leading to a more activated status characterized by cellular ROS accumulation while, paradoxically, compromising their T cell priming ability. These findings will have repercussions not only for lipid driven cardiometabolic disorders like atherosclerosis, but also for adaptive immune responses to pathogens and/or endogenous (neo) antigens under conditions of hyperlipidemia.


Assuntos
Aterosclerose , Hipercolesterolemia , Camundongos , Animais , Linfócitos T , Espécies Reativas de Oxigênio/metabolismo , Hipercolesterolemia/genética , Células Dendríticas , Aterosclerose/metabolismo , Lipídeos
3.
Ther Adv Neurol Disord ; 16: 17562864231211077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084102

RESUMO

Background: Cladribine is a highly effective immunotherapy that is applied in two short-term courses over 2 years and reduces relapse rate and disease progression in patients with relapsing multiple sclerosis (MS). Despite the short treatment period, cladribine has a long-lasting effect on disease activity even after recovery of lymphocyte counts, suggesting a yet undefined long-term immune modulating effect. Objectives: Our aim was to provide a more profound understanding of the detailed effects of cladribine, also with regard to the patients' therapy response. Design: We performed an open-labeled, explorative, prospective, single-arm study, in which we examined the detailed lymphocyte subset development of MS patients who received cladribine treatment over 2 years. Methods: We performed in-depth profiling of the effects of cladribine on peripheral blood lymphocytes by flow cytometry, bulk RNA sequencing of sorted CD4+ T cells, CD8+ T cells, and CD19+ B cells as well as single-cell RNA sequencing of peripheral blood mononuclear cells in a total of 23 MS patients before and at different time points up to 24 months after cladribine treatment. Data were correlated with clinical and cranial magnetic resonance imaging (MRI) disease activity. Results: Flow cytometry revealed a predominant and sustained reduction of memory B cells compared to other B cell subsets after cladribine treatment, whereas T cell subsets were slightly reduced in a more uniform pattern. The overall transcriptional profile of total blood B cells exhibited reduced expression of proinflammatory and T cell activating genes, while single-cell transcriptomics revealed that gene expression within each B cell cluster did not change over time. Stable patients displayed stronger reductions of selected memory B cell clusters as compared to patients with clinical or cerebral MRI disease activity. Conclusion: We describe a pronounced and sustained effect of cladribine on the memory B cell compartment, and the resulting change in B cell subset composition causes a significant alteration of B cell transcriptional profiles resulting in reduced proinflammatory and T cell activating capacities. The extent of reduction in selected memory B cell clusters by cladribine may predict treatment response.

4.
Emerg Microbes Infect ; 12(1): 2212809, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37191590

RESUMO

Influenza A viruses (IAV) cause annual epidemics and occasional pandemics in humans. The most recent pandemic outbreak occurred in 2009 with H1N1pdm09. This virus, which most likely reassorted in swine before its transmission to humans, was reintroduced into the swine population and continues circulating ever since. In order to assess its potential to cause reassortants on a cellular level, human origin H1N1pdm09 and a recent Eurasian avian-like H1N1 swine IAV were (co-)passaged in the newly generated swine lung cell line C22. Co-infection with both viruses gave rise to numerous reassortants that additionally carry different mutations which can partially be found in nature as well. Reassortment most frequently affected the PB1, PA and NA segments with the swine IAV as recipient. These reassortants reached higher titers in swine lung cells and were able to replicate in genuine human lung tissue explants ex vivo, suggesting a possible zoonotic potential. Interestingly, reassortment and mutations in the viral ribonucleoprotein complex influence the viral polymerase activity in a cell type and species-specific manner. In summary, we demonstrate reassortment promiscuity of these viruses in a novel swine lung cell model and indicate a possible zoonotic potential of the reassortants.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Humanos , Suínos , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Vírus da Influenza A Subtipo H1N1/genética , Vírus Reordenados/genética , Vírus da Influenza A/genética , Genômica , Doenças dos Suínos/epidemiologia , Influenza Humana/epidemiologia
6.
Mol Ther ; 31(6): 1807-1828, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37073128

RESUMO

While it is experimentally supported that impaired myocardial vascularization contributes to a mismatch between myocardial oxygen demand and supply, a mechanistic basis for disruption of coordinated tissue growth and angiogenesis in heart failure remains poorly understood. Silencing strategies that impair microRNA biogenesis have firmly implicated microRNAs in the regulation of angiogenesis, and individual microRNAs prove to be crucial in developmental or tumor angiogenesis. A high-throughput functional screening for the analysis of a whole-genome microRNA silencing library with regard to their phenotypic effect on endothelial cell proliferation as a key parameter, revealed several anti- and pro-proliferative microRNAs. Among those was miR-216a, a pro-angiogenic microRNA which is enriched in cardiac microvascular endothelial cells and reduced in expression under cardiac stress conditions. miR-216a null mice display dramatic cardiac phenotypes related to impaired myocardial vascularization and unbalanced autophagy and inflammation, supporting a model where microRNA regulation of microvascularization impacts the cardiac response to stress.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Animais , Camundongos , Células Endoteliais/metabolismo , Insuficiência Cardíaca/metabolismo , MicroRNAs/metabolismo , Miocárdio/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/genética
7.
Front Neurol ; 14: 1145737, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970523

RESUMO

Introduction: The measurement of neurofilament light chain (NfL) in blood is a promising biomarker of neurological injury and disease. We investigated the genetic factors that underlie serum NfL levels (sNfL) of individuals without neurological conditions. Methods: We performed a discovery genome-wide association study (GWAS) of sNfL in participants of the German BiDirect Study (N = 1,899). A secondary GWAS for meta-analysis was performed in a small Austrian cohort (N = 287). Results from the meta-analysis were investigated in relation with several clinical variables in BiDirect. Results: Our discovery GWAS identified 12 genomic loci at the suggestive threshold ((p < 1 × 10-5). After meta-analysis, 7 loci were suggestive of an association with sNfL. Genotype-specific differences in sNfL were observed for the lead variants of meta-analysis loci (rs34523114, rs114956339, rs529938, rs73198093, rs34372929, rs10982883, and rs1842909) in BiDirect participants. We identified potential associations in meta-analysis loci with markers of inflammation and renal function. At least 6 protein-coding genes (ACTG2, TPRKB, DMXL1, COL23A1, NAT1, and RIMS2) were suggested as genetic factors contributing to baseline sNfL levels. Discussion: Our findings suggest that polygenic regulation of neuronal processes, inflammation, metabolism and clearance modulate the variability of NfL in the circulation. These could aid in the interpretation of sNfL measurements in a personalized manner.

8.
Aging Cell ; 22(3): e13768, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36756698

RESUMO

Heart failure has reached epidemic proportions in a progressively ageing population. The molecular mechanisms underlying heart failure remain elusive, but evidence indicates that DNA damage is enhanced in failing hearts. Here, we tested the hypothesis that endogenous DNA repair in cardiomyocytes is critical for maintaining normal cardiac function, so that perturbed repair of spontaneous DNA damage drives early onset of heart failure. To increase the burden of spontaneous DNA damage, we knocked out the DNA repair endonucleases xeroderma pigmentosum complementation group G (XPG) and excision repair cross-complementation group 1 (ERCC1), either systemically or cardiomyocyte-restricted, and studied the effects on cardiac function and structure. Loss of DNA repair permitted normal heart development but subsequently caused progressive deterioration of cardiac function, resulting in overt congestive heart failure and premature death within 6 months. Cardiac biopsies revealed increased oxidative stress associated with increased fibrosis and apoptosis. Moreover, gene set enrichment analysis showed enrichment of pathways associated with impaired DNA repair and apoptosis, and identified TP53 as one of the top active upstream transcription regulators. In support of the observed cardiac phenotype in mutant mice, several genetic variants in the ERCC1 and XPG gene in human GWAS data were found to be associated with cardiac remodelling and dysfunction. In conclusion, unrepaired spontaneous DNA damage in differentiated cardiomyocytes drives early onset of cardiac failure. These observations implicate DNA damage as a potential novel therapeutic target and highlight systemic and cardiomyocyte-restricted DNA repair-deficient mouse mutants as bona fide models of heart failure.


Assuntos
Proteínas de Ligação a DNA , Insuficiência Cardíaca , Camundongos , Animais , Humanos , Proteínas de Ligação a DNA/metabolismo , Miócitos Cardíacos/metabolismo , Reparo do DNA/genética , Dano ao DNA/genética , Insuficiência Cardíaca/genética , Endonucleases
9.
Circ Arrhythm Electrophysiol ; 16(3): e011602, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36763906

RESUMO

BACKGROUND: Electrical remodeling in human persistent atrial fibrillation is believed to result from rapid electrical activation of the atria, but underlying genetic causes may contribute. Indeed, common gene variants in an enhancer region close to PITX2 (paired-like homeodomain transcription factor 2) are strongly associated with atrial fibrillation, but the mechanism behind this association remains unknown. This study evaluated the consequences of PITX2 deletion (PITX2-/-) in human induced pluripotent stem cell-derived atrial cardiomyocytes. METHODS: CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) was used to delete PITX2 in a healthy human iPSC line that served as isogenic control. Human induced pluripotent stem cell-derived atrial cardiomyocytes were differentiated with unfiltered retinoic acid and cultured in atrial engineered heart tissue. Force and action potential were measured in atrial engineered heart tissues. Single human induced pluripotent stem cell-derived atrial cardiomyocytes were isolated from atrial engineered heart tissue for ion current measurements. RESULTS: PITX2-/- atrial engineered heart tissue beats slightly slower than isogenic control without irregularity. Force was lower in PITX2-/- than in isogenic control (0.053±0.015 versus 0.131±0.017 mN, n=28/3 versus n=28/4, PITX2-/- versus isogenic control; P<0.0001), accompanied by lower expression of CACNA1C and lower L-type Ca2+ current density. Early repolarization was weaker (action potential duration at 20% repolarization; 45.5±13.2 versus 8.6±5.3 ms, n=18/3 versus n=12/4, PITX2-/- versus isogenic control; P<0.0001), and maximum diastolic potential was more negative (-78.3±3.1 versus -69.7±0.6 mV, n=18/3 versus n=12/4, PITX2-/- versus isogenic control; P=0.001), despite normal inward rectifier currents (both IK1 and IK,ACh) and carbachol-induced shortening of action potential duration. CONCLUSIONS: Complete PITX2 deficiency in human induced pluripotent stem cell-derived atrial cardiomyocytes recapitulates some findings of electrical remodeling of atrial fibrillation in the absence of fast beating, indicating that these abnormalities could be primary consequences of lower PITX2 levels.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Átrios do Coração , Potenciais de Ação , Miócitos Cardíacos/metabolismo
10.
Heart Rhythm ; 20(5): 720-727, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764349

RESUMO

BACKGROUND: The Worm Study, ascertained from a multigeneration pedigree segregating a single amino acid deletion in SCN5A (c.4850_4852delTCT, p.(Phe1617del), rs749697698), is characterized by substantial phenotypic heterogeneity and overlap of sudden cardiac death, long-QT syndrome, cardiac conduction disease, Brugada syndrome, and isorhythmic atrioventricular dissociation. Linkage analysis for a synthetic trait derived from these phenotypes identified a single peak (logarithm of the odds [LOD] = 4.52) at the SCN5A/SCN10A/SCN11A locus on chromosome 3. OBJECTIVE: This study explored the role of additional genetic variation in the chromosome 3 locus as a source of phenotypic heterogeneity in the Worm Study population. METHODS: Genotypes underlying the linkage peak (n = 70) were characterized using microarrays. Haplotypes were determined using family-aware phasing and a population-specific reference panel. Variants with minor allele frequencies >0.10 were tested for association with cardiac conduction disease and isorhythmic dissociation using LAMP and logistic regression. RESULTS: Only 1 haplotype carried the p.Phe1617del/rs749697698 deletion, suggesting relatively recent development (∼18 generations); this haplotype contained 5 other missense variants spanning SCN5A/SCN10A/SCN11A. Noncarrier haplotypes (n = 74) ranged in frequency from 0.5% to 5%. Although no variants were associated with cardiac conduction disease, a homozygous missense variant in SCN10A was associated with isorhythmic dissociation after correction for multiple comparisons (odds ratio 11.23; 95% confidence interval 2.76-23.39; P = 1.2 × 10-4). This variant (rs12632942) was previously associated with PR interval. CONCLUSION: Our data suggest that other variants, alongside a pathogenic mutation, are associated with phenotypic heterogeneity. Single-mutation screening may be insufficient to predict electrical heart disease in patients and family members. In the Worm Study population, segregating a pathogenic SCN5A mutation, compound variation in the SCN5A/SCN10A/SCN11A locus determines arrhythmic outcome.


Assuntos
Síndrome de Brugada , Canal de Sódio Disparado por Voltagem NAV1.5 , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Morte Súbita Cardíaca/epidemiologia , Morte Súbita Cardíaca/etiologia , Síndrome de Brugada/diagnóstico , Fenótipo , Bloqueio Cardíaco , Variação Genética
11.
Hypertension ; 80(4): 771-782, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36715011

RESUMO

BACKGROUND: Glomerular hyperfiltration (GH) is an important mechanism in the development of albuminuria in hypertension. Upregulation of COX2 (cyclooxygenase 2) and prostaglandin E2 (PGE2) was linked to podocyte damage in GH. We explored the potential renoprotective effects of either separate or combined pharmacological blockade of EP2 (PGE2 receptor type 2) and EP4 (PGE2 receptor type 4) in GH. METHODS: We conducted in vivo studies in a transgenic zebrafish model (Tg[fabp10a:gc-EGFP]) suitable for analysis of glomerular filtration barrier function and a genetic rat model with GH, albuminuria, and upregulation of PGE2. Similar pharmacological interventions and primary outcome analysis on albuminuria phenotype development were conducted in both model systems. RESULTS: Stimulation of zebrafish embryos with PGE2 induced an albuminuria-like phenotype, thus mimicking the suggested PGE2 effects on glomerular filtration barrier dysfunction. Both separate and combined blockade of EP2 and EP4 reduced albuminuria phenotypes in zebrafish and rat models. A significant correlation between albuminuria and podocyte damage in electron microscopy imaging was identified in the rat model. Dual blockade of both receptors showed a pronounced synergistic suppression of albuminuria. Importantly, this occurred without changes in arterial blood pressure, glomerular filtration rate, or tissue oxygenation in magnetic resonance imaging, while RNA sequencing analysis implicated a potential role of circadian clock genes. CONCLUSIONS: Our findings confirm a role of PGE2 in the development of albuminuria in GH and support the renoprotective potential of combined pharmacological blockade of EP2 and EP4 receptors. These data support further translational research to explore this therapeutic option and a possible role of circadian clock genes.


Assuntos
Receptores de Prostaglandina E Subtipo EP2 , Peixe-Zebra , Animais , Ratos , Peixe-Zebra/metabolismo , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Albuminúria , Dinoprostona , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Proteínas de Transporte , Ciclo-Oxigenase 2/metabolismo
12.
Adv Sci (Weinh) ; 10(5): e2203053, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36526599

RESUMO

Acute myocardial infarction (AMI) is accompanied by a systemic trauma response that impacts the whole body, including blood. This study addresses whether macrophages, key players in trauma repair, sense and respond to these changes. For this, healthy human monocyte-derived macrophages are exposed to 20% human AMI (n = 50) or control (n = 20) serum and analyzed by transcriptional and multiparameter functional screening followed by network-guided data interpretation and drug repurposing. Results are validated in an independent cohort at functional level (n = 47 AMI, n = 25 control) and in a public dataset. AMI serum exposure results in an overt AMI signature, enriched in debris cleaning, mitosis, and immune pathways. Moreover, gene networks associated with AMI and with poor clinical prognosis in AMI are identified. Network-guided drug screening on the latter unveils prostaglandin E2 (PGE2) signaling as target for clinical intervention in detrimental macrophage imprinting during AMI trauma healing. The results demonstrate pronounced context-induced macrophage reprogramming by the AMI systemic environment, to a degree decisive for patient prognosis. This offers new opportunities for targeted intervention and optimized cardiovascular disease risk management.


Assuntos
Macrófagos , Infarto do Miocárdio , Humanos , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Prognóstico , Redes Reguladoras de Genes
13.
Proc Natl Acad Sci U S A ; 120(1): e2209944120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574650

RESUMO

After natalizumab (NAT) cessation, some multiple sclerosis (MS) patients experience a severe disease rebound. The rebound pathophysiology is still unclear; however, it has been linked to interleukin-17-producing T-helper (Th17) cells. We demonstrate that during NAT treatment, MCAM+CCR6+Th17 cells gradually acquire a pathogenic profile, including proinflammatory cytokine production, pathogenic transcriptional signatures, brain endothelial barrier impairment, and oligodendrocyte damage via induction of apoptotic pathways. This is accompanied by an increase in Th17 cell frequencies in the cerebrospinal fluid of NAT-treated patients. Notably, Th17 cells derived from NAT-treated patients, who later developed a disease rebound upon treatment cessation, displayed a distinct transcriptional pathogenicity profile associated with altered migratory properties. Accordingly, increased brain infiltration of patient Th17 cells was illustrated in a humanized mouse model and brain histology from a rebound patient. Therefore, peripheral blood-accumulated MCAM+CCR6+Th17 cells might be involved in rebound pathophysiology, and monitoring of changes in Th17 cell pathogenicity in patients before/during NAT treatment cessation might enable rebound risk assessment in the future.


Assuntos
Esclerose Múltipla , Células Th17 , Animais , Camundongos , Natalizumab/farmacologia , Natalizumab/uso terapêutico , Virulência , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/líquido cefalorraquidiano , Encéfalo
14.
J Clin Med ; 13(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38202056

RESUMO

BACKGROUND: Congenital factor VII (FVII) deficiency, a rare bleeding disorder resulting from mutations in the F7 gene with autosomal recessive inheritance, exhibits clinical heterogeneity that lacks a strong correlation with FVII:C levels. The objective of this study was to discern genetic defects and assess their associations with the clinical phenotype in a substantial cohort comprising 785 white women exhibiting FVII:C levels below the age-dependent cut-off percentage. PATIENTS AND METHODS: Individuals with verified inherited factor VII deficiency underwent i) genotyping using the Sanger method and multiplex ligation-dependent probe amplification (MLPA) to identify F7 mutations, including common polymorphic variants. Additionally, they were ii) categorized based on clinical bleeding scores (BS). Thrombophilic variants and blood groups were also determined in the study participants. RESULTS: The probands in this study encompassed both asymptomatic individuals (referred for a laboratory investigation due to recurrent prolonged prothrombin time; n = 221) and patients who manifested mild, moderate, or severe bleeding episodes (n = 564). The spectrum of bleeding symptoms included epistaxis, gum bleeding, gastrointestinal bleeding, hematuria, postoperative bleeding, and gynecologic hemorrhage. The median ISTH bleeding score (BS) recorded within a two-year period prior to the work-up was 2 (0-17). Notably, this score was significantly higher in symptomatic women compared to their asymptomatic counterparts (3 versus 0; p < 0.001). The corresponding PBAC score before hormonal treatment stood at 225 (5-1200), exhibiting a positive correlation with the ISTH BS (rho = 0.38; p = 0.001). Blood group O was more prevalent in symptomatic women compared to asymptomatic individuals (58 versus 42%; p = 0.01). Among the 329 women (42%), known and novel mutations in the F7 gene, encompassing coding regions, exon/intron boundaries, and the promoter region, were identified, while common polymorphisms were detected in 647 subjects (95%). Logistic regression analysis, adjusted for clinical and laboratory data (including blood group, FVII activity, the presence of F7 gene mutations and/or polymorphisms, thrombophilia status, and additional factor deficiencies) revealed that older age at referral (increase per year) (odds/95% CI: 1.02/1.007-1.03), the presence of blood group O (odds/95% CI: 1.9/1.2-3.3), and the coexistence of further bleeding defects (odds/95% CI: 1.8/1.03-3.1) partially account for the differences in the clinical bleeding phenotype associated with FVII deficiency. CONCLUSION: The clinical phenotype in individuals with FVII deficiency is impacted by factors such as age, blood group, and the concurrent presence of other bleeding defects.

15.
Front Mol Neurosci ; 15: 1025389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533130

RESUMO

Background: The amygdala is crucial for emotional cognitive processing. Affective or emotional states can bias cognitive processes, including attention, memory, and decision-making. This can result in optimistic or pessimistic behaviors that are partially driven by the activation of the amygdala. The resulting emotional cognitive bias is a common feature of anxiety and mood disorders, both of which are interactively influenced by genetic and environmental factors. It is also known that emotional cognitive biases can be influenced by environmental factors. However, little is known about the effects of genetics and/or gene-environment interactions on emotional cognitive biases. We investigated the effects of the genetic background and environmental enrichment on the transcriptional profiles of the mouse amygdala following a well-established cognitive bias test. Methods: Twenty-four female C57BL/6J and B6D2F1N mice were housed either in standard (control) conditions or in an enriched environment. After appropriate training, the cognitive bias test was performed on 19 mice that satisfactorily completed the training scheme to assess their responses to ambiguous cues. This allowed us to calculate an "optimism score" for each mouse. Subsequently, we dissected the anterior and posterior portions of the amygdala to perform RNA-sequencing for differential expression and other statistical analyses. Results: In general, we found only minor changes in the amygdala's transcriptome associated with the levels of optimism in our mice. In contrast, we observed wide molecular effects of the genetic background in both housing environments. The C57BL/6J animals showed more transcriptional changes in response to enriched environments than the B6D2F1N mice. We also generally found more dysregulated genes in the posterior than in the anterior portion of the amygdala. Gene set overrepresentation analyses consistently implicated cellular metabolic responses and immune processes in the differences observed between mouse strains, while processes favoring neurogenesis and neurotransmission were implicated in the responses to environmental enrichment. In a correlation analysis, lipid metabolism in the anterior amygdala was suggested to influence the levels of optimism. Conclusions: Our observations underscore the importance of selecting appropriate animal models when performing molecular studies of affective conditions or emotional states, and suggest an important role of immune and stress responses in the genetic component of emotion regulation.

16.
Heart Rhythm ; 19(12): 2115-2124, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36007727

RESUMO

BACKGROUND: Little is known about genome-wide changes in the atrial transcriptome as a cause or consequence of atrial fibrillation (AF), and the effect of its common and clinically relevant comorbidity-heart failure (HF). OBJECTIVE: The purpose of this study was to explore candidate disease processes for AF by investigating gene expression changes in atrial tissue samples from patients with and without AF, stratified by HF. METHODS: RNA sequencing was performed in right and left atrial appendage tissue in 195 patients undergoing open heart surgery from centers participating in the CATCH-ME consortium (no history of AF, n = 91; paroxysmal AF, n = 53; persistent/permanent AF, n = 51). Analyses were stratified into patients with/without HF (n = 75/120) and adjusted for age, sex, atrial side, and a combination of clinical characteristics. RESULTS: We identified 35 genes associated with persistent AF compared to patients without a history of AF, both in the presence or absence of HF (false discovery rate <0.05). These were mostly novel associations, including 13 long noncoding RNAs. Genes were involved in regulation of cardiomyocyte structure, conduction properties, fibrosis, inflammation, and endothelial dysfunction. Gene set enrichment analysis identified mainly inflammatory gene sets to be enriched in AF patients without HF, and gene sets involved in cellular respiration in AF patients with HF. CONCLUSION: Analysis of atrial gene expression profiles identified numerous novel genes associated with persistent AF, in the presence or absence of HF. Interestingly, no consistent transcriptional changes were associated with paroxysmal AF, suggesting that AF-induced changes in gene expression predominate other changes.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Humanos , Miócitos Cardíacos , Fibrose , Inflamação/genética , Inflamação/complicações
17.
Front Nutr ; 9: 910762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859757

RESUMO

Background: During early phases of life, such as prenatal or early postnatal development and adolescence, an organism's phenotype can be shaped by the environmental conditions it experiences. According to the Match-Mismatch hypothesis (MMH), changes to this environment during later life stages can result in a mismatch between the individual's adaptations and the prevailing environmental conditions. Thus, negative consequences in welfare and health can occur. We aimed to test the MMH in the context of food availability, assuming adolescence as a sensitive period of adaptation. Methods: We have previously reported a study of the physiological and behavioral effects of match and mismatch conditions of high (ad libitum) and low (90% of ad libitum intake) food availability from adolescence to early adulthood in female C57BL/6J mice (n = 62). Here, we performed RNA-sequencing of the livers of a subset of these animals (n = 16) to test the effects of match and mismatch feeding conditions on the liver transcriptome. Results: In general, we found no effect of the match-mismatch situations. Contrarily, the amount of food available during early adulthood (low vs. high) drove the differences we observed in final body weight and gene expression in the liver, regardless of the amount of food available to the animals during adolescence. Many of the differentially expressed genes and the corresponding biological processes found to be overrepresented overlapped, implicating common changes in various domains. These included metabolism, homeostasis, cellular responses to diverse stimuli, transport of bile acids and other molecules, cell differentiation, major urinary proteins, and immunity and inflammation. Conclusions: Our previous and present observations found no support for the MMH in the context of low vs high food availability from adolescence to early adulthood in female C57BL/6J mice. However, even small differences of approximately 10% in food availability during early adulthood resulted in physiological and molecular changes with potential beneficial implications for metabolic diseases.

18.
Biomedicines ; 10(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35625889

RESUMO

BACKGROUND: Pathogens or trauma-derived danger signals induced maturation and activation of plasmacytoid dendritic cells (pDCs) is a pivotal step in pDC-dependent host defense. Exposure of pDC to cardiometabolic disease-associated lipids and proteins may well influence critical signaling pathways, thereby compromising immune responses against endogenous, bacterial and viral pathogens. In this study, we have addressed if hyperlipidemia impacts human pDC activation, cytokine response and capacity to prime CD4+ T cells. METHODS AND RESULTS: We show that exposure to pro-atherogenic oxidized low-density lipoproteins (oxLDL) led to pDC lipid accumulation, which in turn ablated a Toll-like receptor (TLR) 7 and 9 dependent up-regulation of pDC maturation markers CD40, CD83, CD86 and HLA-DR. Moreover, oxLDL dampened TLR9 activation induced the production of pro-inflammatory cytokines in a NUR77/IRF7 dependent manner and impaired the capacity of pDCs to prime and polarize CD4+ T helper (Th) cells. CONCLUSION: Our findings reveal profound effects of dyslipidemia on pDC responses to pathogen-derived signals.

19.
Elife ; 112022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35543413

RESUMO

The proinflammatory alarmins S100A8 and S100A9 are among the most abundant proteins in neutrophils and monocytes but are completely silenced after differentiation to macrophages. The molecular mechanisms of the extraordinarily dynamic transcriptional regulation of S100a8 and S100a9 genes, however, are only barely understood. Using an unbiased genome-wide CRISPR/Cas9 knockout (KO)-based screening approach in immortalized murine monocytes, we identified the transcription factor C/EBPδ as a central regulator of S100a8 and S100a9 expression. We showed that S100A8/A9 expression and thereby neutrophil recruitment and cytokine release were decreased in C/EBPδ KO mice in a mouse model of acute lung inflammation. S100a8 and S100a9 expression was further controlled by the C/EBPδ antagonists ATF3 and FBXW7. We confirmed the clinical relevance of this regulatory network in subpopulations of human monocytes in a clinical cohort of cardiovascular patients. Moreover, we identified specific C/EBPδ-binding sites within S100a8 and S100a9 promoter regions, and demonstrated that C/EBPδ-dependent JMJD3-mediated demethylation of H3K27me3 is indispensable for their expression. Overall, our work uncovered C/EBPδ as a novel regulator of S100a8 and S100a9 expression. Therefore, C/EBPδ represents a promising target for modulation of inflammatory conditions that are characterized by S100a8 and S100a9 overexpression.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT , Calgranulina A , Calgranulina B , Epigênese Genética , Alarminas , Animais , Proteína delta de Ligação ao Facilitador CCAAT/genética , Calgranulina A/genética , Calgranulina B/genética , Camundongos , Transcrição Gênica
20.
Mol Biol Rep ; 49(7): 6093-6102, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35359237

RESUMO

PURPOSE: Juvenile idiopathic arthritis-associated uveitis (JIAU) may run a chronic and treatment-resistant course, and occasionally, alterations of the iris vasculature may be observed clinically. METHODS: Iris tissue (IT), aqueous humor (AH) and serum samples from patients with clinically inactive JIAU (n = 30), acute anterior uveitis (AAU; n = 18), and primary open angle glaucoma (POAG; n = 20) were obtained during trabeculectomy or cataract surgery. Samples were analyzed by RNA-Seq, qRT-PCR, LC-IMS, Western-Blot, and LEGENDplex™ analysis. Pattern of iris vasculature in JIAU patients was assessed qualitatively via fluorescein and indocyanine green angiography (FLA/ICGA). RESULTS: RNA-Seq of IT showed significantly differential expression (DE) of 136 genes between JIAU and POAG, of which 15 were associated with angiogenesis. qRT-PCR, performed to validate RNA-Seq results, showed upregulation of the angiogenesis-related genes Kdr, Angpt-1, Tie-1, Tie-2 and Mmrn2 in IT (JIAU vs POAG, p > 0.05). LC-IMS of IT revealed a total number of 56 DE proteins (JIAU vs POAG), of which Angiopoetin, Lumican and Decorin were associated with angiogenesis and showed increased (p > 0.05) expression on Western-Blot analysis. LEGENDplex™ analysis showed upregulation of ANGPT-2 in AH from JIAU compared to AAU and POAG, whereas VEGF was upregulated in AAU. Iris vascular leakage, hypoperfusion and neovascularization were observed by FLA/ICGA in JIA patients with treatment-refractory complicated course of uveitis. CONCLUSION: Angiogenesis-related factors could play a role in long-standing complicated JIAU, leading to clinically visible alterations in selected cases.


Assuntos
Artrite Juvenil , Glaucoma de Ângulo Aberto , Trabeculectomia , Uveíte Anterior , Uveíte , Artrite Juvenil/complicações , Artrite Juvenil/genética , Humanos , Neovascularização Patológica/genética , Trabeculectomia/efeitos adversos , Uveíte/complicações , Uveíte Anterior/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA